
C5D: Sequential Continuous Convex Collision Detection Using Cone
Casting
XIAODI YUAN, University of California San Diego, USA
FANBO XIANG, Hillbot Inc., USA
YIN YANG, University of Utah, USA
HAO SU, University of California San Diego, USA and Hillbot Inc., USA

Fig. 1. Gachapon: We simulate the interaction between nine free spheres and a rotating dispenser (silver) driven by a driving gear (orange) using ABD.
Throughout the simulation, the non-intersection property is enforced by our proposed CCD algorithm for convex shapes undergoing affine motions. During
time steps with peak complexity, our method handles 10 global CCD queries in 16.8 ms, achieving a 12× speed-up than the primitive-based ACCD baseline.

In physics-based simulation of rigid or nearly rigid objects, collisions often

become the primary performance bottleneck, particularly when enforc-

ing intersection-free constraints. Previous simulation frameworks rely on

primitive-level CCD algorithms. Due to the large number of colliding sur-

face primitives to process, those methods are computationally intensive

and heavily dependent on advanced parallel computing resources such as

GPUs, which are often inaccessible due to competing tasks or capped thread-

ing capacity in applications like policy training for robotics. To address

these limitations, we propose a sequential CCD algorithm for convex shapes

undergoing constant affine motion. This approach uses the conservative

advancement method to iteratively refine a lower-bound estimate of the

TOI, exploiting the linearity of affine motion and the efficiency of convex

shape distance computation. Our CCD algorithm integrates seamlessly into

the ABD framework, achieving a 10-fold speed-up over primitive-level CCD.

Its high single-threaded efficiency further enables significant throughput

improvements via scene-level parallelism, making it well-suited for resource-

constrained environments.

Authors’ addresses: Xiaodi Yuan, University of California San Diego, La Jolla, CA, USA,

x9yuan@ucsd.edu; Fanbo Xiang, Hillbot Inc., La Jolla, CA, USA, fx@hillbot.ai; Yin Yang,

University of Utah, Salt Lake City, UT, USA, yin.yang@utah.edu; Hao Su, University of

California San Diego, 9500 Gilman Dr, La Jolla, CA, USA and Hillbot Inc., La Jolla, CA,

USA, haosu@ucsd.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 0730-0301/2025/8-ART

https://doi.org/10.1145/3731151

CCS Concepts: • Computing methodologies → Collision detection;
Physical simulation.

Additional Key Words and Phrases: Continuous collision detection, Rigid

body dynamics

ACM Reference Format:
Xiaodi Yuan, Fanbo Xiang, Yin Yang, and Hao Su. 2025. C

5
D: Sequential

Continuous Convex Collision Detection Using Cone Casting. ACM Trans.
Graph. 44, 4 (August 2025), 14 pages. https://doi.org/10.1145/3731151

1 INTRODUCTION
The simulation of rigid or nearly rigid objects is a ubiquitous task

in computer graphics and robotics. As highly stiff materials re-

sist body deformation strongly, a common practice is to use a set

of reduced coordinates to simplify its dynamics i.e., the classic

rigid body dynamics (RBD) [Baraff 1997], which results in order-of-

magnitude speed-ups compared with FEM-based methods [Bathe

2006]. On the other hand, processing interactions induced by colli-

sions among stiff bodies emerges as a critical challenge, particularly

when intersection-free collision needs to be strictly enforced.

Incremental potential contact (IPC) [Li et al. 2020] offers a promis-

ing solution for collision and contact handling and has been proven

effective for RBD [Ferguson et al. 2021]. Unfortunately, as classic

RBD yields a curly trajectory between time steps, IPC for RBD is

costly for calculating the time of impact (TOI). Lan et al. [2022]

proposed the affine body dynamics (ABD) to obviate this limitation.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

HTTPS://ORCID.ORG/0009-0003-2320-2297
HTTPS://ORCID.ORG/0009-0005-5335-873X
HTTPS://ORCID.ORG/0000-0001-7645-5931
HTTPS://ORCID.ORG/0000-0002-1796-2682
https://orcid.org/0009-0003-2320-2297
https://orcid.org/0009-0005-5335-873X
https://orcid.org/0000-0001-7645-5931
https://orcid.org/0000-0002-1796-2682
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3731151
https://doi.org/10.1145/3731151

2 • Yuan, X. et al

Unlike RBD, ABD relaxes rigidity to allow small deformation in

an affine subspace, leading to piecewise linear motion so that the

regular continuous collision detection (CCD) method remains valid.

Nevertheless, those previous methods, such as IPC and ABD,

rely on primitive-level CCD algorithms that compute the TOI via

solving cubic polynomials, either analytically [Li et al. 2020] or

numerically [Lan et al. 2022; Li et al. 2021]. The performance of these

algorithms is up to the number of primitives. Even after broad-phase

culling with spatial data structures such as hash grids [Teschner et al.

2003] and bounding volume hierarchy (BVH) [Wang et al. 2018],

complicated scenes often yield a large number of colliding pairs.

Hardware-level parallelism becomes the only option for further

improving the efficiency of collision processing.

Unfortunately, adequate hardware resources for massive paral-

lelization are not always available. Many applications do not have

access to high-end GPUs, and even when they do, these GPUs are

also needed for other computing tasks such as rendering. This issue

is even more prominent when training robotics policies in simula-

tors, where thousands of robot instances are simulated in parallel.

In this scenario, parallelism is trivially achieved across instances,

and the overall simulation performance comes down to the single-

threaded execution efficiency for each instance.

To address the challenge of CCD with limited computational re-

sources, instead of handling numerous primitives, we decompose

the collision shapes into a small number of convex proxies using

approximate convex decomposition (ACD) [Wei et al. 2022] and per-

form shape-level CCD on these convex proxies—a pipeline widely

adopted by real-time simulators such as Bullet [Coumans and Bai

2021] and MuJoCo [Todorov et al. 2012]. When applied to ABD,

this convexity assumption introduces a challenge that, to the best

of our knowledge, has not been previously addressed: CCD for

convex shapes under affine motion. We propose a novel algorithm

based on conservative advancement (CA) [Mirtich 1996], which iter-

atively refines the TOI estimate by advancing toward a lower-bound

TOI derived from the current distance measurement. Leveraging

the affine trajectories, our method achieves efficient convergence

through tight TOI bounds and integrates seamlessly into the ABD

framework.

Leveraging the small number of convex parts and the efficiency

of CCD between them, our algorithm delivers high performance

even in single-threaded implementations, achieving speeds approx-

imately 10 times faster than the primitive-level ACCD [Li et al.

2021]. Its low computational resource requirements also enable ef-

ficient parallel simulation of multiple scenes, further increasing

the overall throughput by 14 times on a multi-core CPU—a signifi-

cant advantage for downstream applications such as robotics. Our

implementation of the proposed CCD algorithms is available at

https://github.com/Rabbit-Hu/c5d.

2 RELATED WORK

2.1 Stiff and Rigid Body Simulation
Rigid body simulation has been extensively studied in graphics

and robotics [Baraff 1997; Bender et al. 2014; Mirtich and Canny

1995]. Since the configuration of a rigid object can be fully described

with six variables, rigid body simulation puts more emphasis on

how to handle collisions and contacts. Treating collisions as hard

non-intersection constraints traditionally leads to algorithms based

on linear complimentary programming (LCP) [Anitescu and Potra

1997; Baraff 1994, 1995; Erleben 2007; Kaufman et al. 2005; Stewart

2000; Trinkle et al. 2001], which is generally an NP-hard problem.

In contrast, penalty-based algorithms [Drumwright 2007; Fisher

and Lin 2001; Hasegawa et al. 2004; Macklin et al. 2016; Müller

et al. 2007; Tang et al. 2014; Xu et al. 2014] often replace hard non-

intersection constraints with soft, spring-like penalties. However,

such penalties introduce the risk of unresolved intersections and

inaccurate contact forces, restricting their use primarily to visually

plausible simulations.

As a distinctive penalty-based approach, the recent incremental

potential contact (IPC) algorithms [Li et al. 2020], such as Rigid-IPC

[Ferguson et al. 2021] and ABD [Chen et al. 2022; Huang et al. 2024;

Lan et al. 2022], employ barrier functions to enforce non-intersection.

When combined with a CCD-filtered projected Newton solver, IPC

guarantees robust and efficient intersection-free simulation. How-

ever, solving IPC-based systems is particularly CCD-intensive, as a

global CCD must be performed in every Newton iteration. In con-

trast, classic rigid-body simulators such as Bullet [Coumans and

Bai 2021] typically only use CCD to find potential contact pairs and

avoid missing contacts between fast-moving objects.

From a CCD perspective, a particularly important feature of

(nearly-)rigid body simulators is the nature of the piecewise tra-
jectories produced by their iterative solvers. Classic methods such

as Bullet directly formulate rigid body models with 6-DOF 𝑆𝐸 (3)
coordinates and iteratively update them by small time steps, dur-

ing which the translational and linear velocities remain constant,

hence generating a piecewise screw trajectory. In contrast, Rigid-IPC

linearly interpolates between rotation vectors 𝜽 before applying

Rodrigues’ formula, resulting in a piecewise curved, non-screw tra-

jectory that requires a specialized curved CCD algorithm. Lastly,

ABD relaxes the rigidity constraint by adopting 12-DOF affine coor-

dinates, hence generating a piecewise linear trajectory where each

segment is defined by constant affine velocities (see Section 3). This

linear trajectory enables efficient linear CCD methods, which is a

key factor behind ABD’s significant speed-up over Rigid-IPC.

2.2 Continuous Collision Detection
Primitive-Level CCD. Primitive-level CCD methods compute the

TOI between pairs of geometric primitives, typically vertex-triangle

or edge-edge pairs. We refer the reader to [Wang et al. 2021] for a

comprehensive survey on this class of methods. Using the closed-

form expression of the primitive distance as a function of 𝑡 , the TOI

can be algebraically solved through polynomial equations applica-

ble to both linear [Provot 1997] and screw motion [Canny 1986;

Redon et al. 2000]. Although floating-point root-finding techniques

are efficient, they are vulnerable to numerical errors, frequently

resulting in false positives and negatives for closely positioned or

degenerate primitive pairs. In contrast, conservative advancement

(CA) methods iteratively refine a lower-bound estimate of the TOI

using simple floating-point arithmetic, thereby enhancing robust-

ness against numerical inaccuracies. Examples include ACCD [Li

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://github.com/Rabbit-Hu/c5d

C5D: Sequential Continuous Convex Collision Detection Using Cone Casting • 3

et al. 2021] for linear motion, [Ferguson et al. 2021] for curved mo-

tion, and [Tang et al. 2009] for screw motion. When employing

primitive-level methods to determine the TOI between triangular

meshes, it is necessary to traverse all potential primitive pairs and

select the minimum TOI, a process that can be computationally

intensive for high-resolution meshes.

Shape-level CCD. Shape-level CCD methods process pairs of mov-

ing shapes holistically without decomposing them into numerous

primitive pairs. They often require convexity of the collision shapes

to facilitate efficient computation of distances and TOI bounds.

van den Bergen and Gregorius [2010] transforms the CCD of con-

vex shapes under affine motion to a CA-like ray-casting process

onto a Minkowski sum. Bullet [Coumans and Bai 2021] extends this

approach to screw motion by integrating angular velocities into the

computation of lower-bound TOI estimates within CA iterations,

building upon the framework of [Mirtich 1996]. In this paper, we

propose to extend shape-level CA-based CCD to affine motions,

leveraging the advantages of affine motions to obtain tighter TOI

bounds and thereby accelerate convergence.

3 PROBLEM FORMULATION
In this paper, we focus on the problem of continuous collision detec-

tion between convex shapes that undergo piecewise affine motion.

We start with the problem definition.

Continuous collision detection. Let B1 and B2 be bounded and

closed subsets of R3
representing the shapes of two 3D objects.

Their specific configurations (e.g., positions and orientations) vary

along the time 𝑡 , i.e., B1 (𝑡) and B2 (𝑡). The continuous collision

detection (CCD) seeks the time of impact (TOI), 𝑡∗, defined by:

𝑡∗ = 𝑡∗ (B1,B2) = min{𝑡 ≥ 0 | B1 (𝑡) ∩ B2 (𝑡) ≠ ∅}. (1)

To address the numerical instability of floating-point arithmetic, a

common practice is to find a conservative estimation, 𝑡∗ ∈ (0, 𝑡∗],
which maintains a small gap between shapes:

𝑠 ¯𝑑 ≤ 𝑑
(
B1 (𝑡∗)),B2 (𝑡∗)

)
< 𝛼𝑠 ¯𝑑, (2)

where the distance function 𝑑 is defined as:

𝑑 (B1,B2) = min{∥𝒃1 − 𝒃2∥ | 𝒃1 ∈ B1, 𝒃2 ∈ B2}, (3)

¯𝑑 = 𝑑 (B1 (0),B2 (0)), 𝑠 ∈ (0, 1) and 𝛼 > 1 are a small scaling

factors, e.g., we can have 𝑠 = 0.01 and 𝛼 = 10. 𝑠 ¯𝑑 serves as a minimal

separation requirement that prevents potential numerical instability.

We start with the exact CCD formulation (Equation (1)) and show

later (Section 4.3) that our proposed method can be easily modified

to suit the conservative formulation of CCD (Equation (2)).

Constant affine motion. We focus on CCD between a pair of time-

varying shapes B1 (𝑡),B2 (𝑡), each undergoing constant affine mo-

tion:

B(𝑡) = (𝑰 + 𝑡𝑨) ¯B ⊕ {𝑡𝒗} =
{

¯𝒃 + 𝑡𝑨¯𝒃 + 𝑡𝒗 | ¯𝒃 ∈ ¯B
}
, (4)

where
¯B represents the rest shape, 𝑰 is the identity matrix, and the

affine velocity consists of the linear velocity matrix 𝑨 and the trans-

lational velocity vector 𝒗. The notation ⊕ denotes the Minkowski

sum [van den Bergen 2004] such that:

A ⊕ B = {𝒂 + 𝒃 | 𝒂 ∈ A, 𝒃 ∈ B}. (5)

When A and B are both convex, A ⊕ B is also convex. Note that

Equation (4) assumes trivial initial transformation, i.e., B(0) = ¯B. A
more general affine motion with non-trivial initial transformation,

B(𝑡) = (¯𝑨 + 𝑡𝑨) ¯B ⊕ {𝒗 + 𝑡𝒗}, (6)

can be transformed to the form of Equation (4) as:

B(𝑡) = (𝑰 + 𝑡𝑨 ¯𝑨−1)
(

¯𝑨 ¯B ⊕ {𝒗}
)
⊕
{
𝑡 (𝒗 −𝑨 ¯𝑨−1𝒗)

}
, (7)

allowing general affine motions with arbitrary initial configurations

to be analyzed under the simplified model in Equation (4). When

¯B1, ¯B2 are convex, the shape convexity is preserved under affine

transformations, meaning B1 (𝑡),B2 (𝑡) are also convex.

4 CONE-CASTING CCD (C5D-LINEAR)
We now give the detail of a CA-like algorithm to solve the aforemen-

tioned CCD problem. At every iteration, our algorithm generates

a safe estimate, 𝑡∗ ∈ (0, 𝑡∗], of the actual TOI 𝑡∗ = 𝑡∗ (B1,B2) and
forwards the current time to 𝑡∗. This procedure repeats until either
𝑡 reaches +∞ or a collision is detected, i.e., 𝑑

(
B1 (𝑡),B2 (𝑡)

)
= 0. In

practice, around 60 iterations offer a sufficiently accurate estimate

of the TOI. The computation of 𝑡∗ is derived in Sections 4.1 and 4.2,

while Section 4.3 discusses the transition between iterations.

4.1 Cone casting as a conservative estimation
Wefirst focus on the computation of 𝑡∗ in the first iteration. Consider
two convex shapes under affine motions:

B1 (𝑡) = (𝑰 + 𝑡𝑨1) ¯B1 ⊕ {𝑡𝒗1}, B2 (𝑡) = (𝑰 + 𝑡𝑨2) ¯B2 ⊕ {𝑡𝒗2}. (8)

Assuming the algorithm has not terminated, we have 𝑑 (¯B1, ¯B2) > 0.

Similar to Equation (5), let ⊖ denote the Minkowski difference:

A ⊖ B = A ⊕ (−B) = {𝒂 − 𝒃 | 𝒂 ∈ A, 𝒃 ∈ B}, (9)

and 𝑑 (B1,B2) can be rewritten as 𝑑 (B1 ⊖ B2, {0}). For simplic-

ity, we use 𝑑 (B) as a shorthand for 𝑑 (B, {0}), and define 𝒄 (B) =
argmin𝒃∈B ∥𝒃 ∥. It directly follows that 𝑑 (B) = ∥𝒄 (B)∥. Since B1

and B2 are both convex, 𝒄 (B1 ⊖ B2) and 𝑑 (B1 ⊖ B2) can be ef-

ficiently computed using the GJK algorithm [Gilbert et al. 1988;

Montanari et al. 2017]. These new notations allow three equivalent

formulations of “B1 collides with B2” :

B1 ∩ B2 ≠ ∅ ⇔ 0 ∈ B1 ⊖ B2 ⇔ 𝑑 (B1 ⊖ B2) = 0. (10)

At time 𝑡 , the Minkowski difference evolves into:

B1 (𝑡) ⊖ B2 (𝑡) = (𝑰 + 𝑡𝑨1) ¯B1 ⊖ (𝑰 + 𝑡𝑨2) ¯B2 ⊖ {𝑡𝒗12}
⊆ ¯B1 ⊕ 𝑡𝑨1

¯B1 ⊖ ¯B2 ⊖ 𝑡𝑨2
¯B2 ⊖ {𝑡𝒗12}

= (¯B1 ⊖ ¯B2) ⊖ C(𝑡) . (11)

Here, we have 𝒗12 = 𝒗2−𝒗1, and C(𝑡) = 𝑡 ¯C for
¯C = 𝑨2

¯B2 ⊖𝑨1
¯B1 ⊕

{𝒗12}. This leads to 𝑑
(
B1 (𝑡) ⊖ B2 (𝑡)

)
≥ 𝑑

(
(¯B1 ⊖ ¯B2) ⊖ C(𝑡)

)
, and

therefore:

𝑡∗ (B1,B2) = min

{
𝑡 ≥ 0 | 𝑑

(
B1 (𝑡) ⊖ B2 (𝑡)

)
= 0

}
(12)

≥ min

{
𝑡 ≥ 0 | 𝑑

(
(¯B1 ⊖ ¯B2) ⊖ C(𝑡)

)
= 0

}
(13)

= 𝑡∗
(

¯B1 ⊖ ¯B2, C
)
. (14)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 • Yuan, X. et al

Notice that 𝑑
(
(¯B1 ⊖ ¯B2) ⊖ C(0)

)
= 𝑑 (¯B1, ¯B2) > 0, and thus 𝑡∗

(
¯B1 ⊖

¯B2, C
)
> 0. We say 𝑡∗ = 𝑡∗

(
¯B1 ⊖ ¯B2, C

)
is a conservative estimate of

𝑡∗ (B1,B2), which can be computed through the algorithm presented

in Section 4.2.

Discussion. The TOI estimate 𝑡∗ = 𝑡∗
(

¯B1 ⊖ ¯B2, C
)
can be inter-

preted as the earliest time 𝑡 when the static shape
¯B1 ⊖ ¯B2 is hit by

a truncated cone

{
𝑠𝒙 | 0 ≤ 𝑠 ≤ 𝑡, 𝒙 ∈ ¯C

}
(see Figure 2(b)). We refer

to this formulation as cone casting, a generalization to the widely

used ray casting technique in rendering and game development.

When both 𝑨1 and 𝑨2 become vanished, the cone casting reduces

to ray casting, where the ray starts at 0 and travels along 𝒗12, and

the inequality Equation (13) reaches its equality. In this case, the

TOI can be obtained using the ray-casting CCD algorithm [van den

Bergen and Gregorius 2010].

actual TOI

conservative

trajectory

B2 (𝑡∗)B2 (𝑡∗)

B2 (0)

B1 (0)

B1 (𝑡∗)

¯B1 ⊖ ¯B2

𝑡𝒗12

B2 (0)

B1 (𝑡∗)

B1 (0)

¯B1 ⊖ ¯B2

𝑡 ¯C

(a) (b)

Fig. 2. Ray casting and cone casting: The ray and the truncated cone
are shown in yellow. (a): Constant translational motion and ray casting.
Upon convergence, a single execution of the ray-casting algorithm computes
𝑡∗ = 𝑡∗ (¯B1 ⊖ ¯B2, {𝑡𝒗12}) = 𝑡∗ (B1, B2) . (b): Constant affine motion and
cone casting. Upon convergence, a single execution of the cone-casting
algorithm computes 𝑡∗ = 𝑡∗ (¯B1 ⊖ ¯B2, 𝑡 ¯C) ≤ 𝑡∗ (B1, B2) , where the LHS
serves as a conservative estimate for the RHS.

4.2 Cone casting by conservative advancement
We show that the CA-based ray casting algorithm [van den Bergen

and Gregorius 2010] can be conveniently generalized for cone cast-

ing problems, i.e., for computing 𝑡∗
(

¯B1 ⊖ ¯B2, C
)
.

Let 𝒔B (𝒗) be the support mapping that maps a given 𝒗 to a point

in B such that 𝒗 · 𝒔B (𝒗) = max𝒃∈B 𝒗 · 𝒃 , or equivalently:

𝒔B (𝒗) ∈ argmax

𝒃∈B
𝒃 · 𝒗 . (15)

This mapping holds the following properties [van den Bergen 2004]:

𝒔A⊕B (𝒗) = 𝒔A (𝒗) + 𝒔B (𝒗), (16)

𝒔𝑘B (𝒗) = 𝑘𝒔B (𝒗), ∀𝑘 ≥ 0, (17)

𝒔−B (𝒗) = −𝒔B (−𝒗), (18)

𝒔𝑨B (𝒗) = 𝑨𝒔B (𝑨⊤𝒗) . (19)

For a closed convex set B, the support vector of every unit vector
�̂� gives a lower bound on 𝑑 (B):

𝑑 (B) = min

𝒃∈B
∥𝒃 ∥ ≥ min

𝒃∈B
𝒃 · �̂� = 𝒔B (−�̂�) · �̂�, (20)

where the equality holds when �̂� = 𝒄 (B)/𝑑 (B) (see Theorem 1 in

the appendix for details).

SubstitutingB with (¯B1⊖ ¯B2)⊖C(𝑡), Equation (20) can be further
simplified to

𝑑
(
(¯B1 ⊖ ¯B2) ⊖ C(𝑡)

)
= 𝑑

(
(¯B1 ⊖ ¯B2) ⊖ 𝑡 ¯C

)
≥ 𝒔 (¯B1⊖ ¯B2)⊖𝑡 ¯C (−�̂�) · �̂� = 𝒔 ¯B1⊖ ¯B2

(−�̂�) · �̂� − 𝑡𝒔 ¯C (�̂�) · �̂�.

By setting �̂� = �̂�∗ = 𝒄 (¯B1 ⊖ ¯B2)/𝑑 (¯B1 ⊖ ¯B2), we have:
𝑑
(
(¯B1 ⊖ ¯B2) ⊖ C(𝑡)

)
≥ 𝑑 (¯B1 ⊖ ¯B2) − 𝑡𝑉 . (21)

It is noted that 𝑉 = 𝒔 ¯C (�̂�∗) · �̂�∗, and it can be efficiently computed

using Equation (19):

𝑉 =

(
𝑨2𝒔 ¯B2

(𝑨⊤
2
�̂�∗) −𝑨1𝒔 ¯B1

(−𝑨⊤
1
�̂�∗) + 𝒗2 − 𝒗1

)
· �̂�∗ . (22)

If 𝑉 ≤ 0, we have that for any 𝑡 ≥ 0,

𝑑
(
B1 (𝑡) ⊖ B2 (𝑡)

)
≥ 𝑑

(
(¯B1 ⊖ ¯B2) ⊖ 𝑡 ¯C

)
≥ 𝑑 (¯B1 ⊖ ¯B2) > 0,

meaning shapes do not collide, or 𝑡∗
(

¯B1 ⊖ ¯B2, C
)
= +∞. On the

other hand, when𝑉 > 0, 𝑡 ≤ 𝑡∗ for 𝑡∗ = 𝑑 (¯B1 ⊖ ¯B2)/𝑉 > 0 becomes

a sufficient condition of 𝑑
(
(¯B1 ⊖ ¯B2) ⊖ C(𝑡)

)
≥ 0. We therefore

argue that 𝑡∗ is a conservative estimate of 𝑡∗
(

¯B1 ⊖ ¯B2, C
)
.

Note that 𝑡∗ is also a conservative estimate of 𝑡∗ (B1,B2), the ulti-
mate goal of the CCD algorithm. This implies that it is unnecessary

(though possible) to run multiple cone-casting CA iterations to refine
the estimate of 𝑡∗

(
¯B1 ⊖ ¯B2, C

)
. A single cone-casting iteration is suf-

ficient to find a 𝑡∗ ≤ 𝑡∗ (B1,B2), enabling the algorithm to advance

the current time by 𝑡∗ and proceed to the next CCD CA iteration
for computing 𝑡∗ (B1,B2). The advancement alters the shape of

¯C,
resulting in a new cone-casting problem in the subsequent CCD CA

iteration, as discussed in detail in Section 4.3.

4.3 Advancement
As the last step in one CA iteration, the current time 𝑇 is advanced

to𝑇 +𝑡∗ computed in Section 4.2. For 𝑖 = 1, 2 respectively, the motion

starting from any time point 𝑇 , B𝑖 (𝑇 + 𝑡), can be transformed into

the form defined in Equation (4):

B𝑖 (𝑇 + 𝑡) = B′𝑖 (𝑡) = (𝑰 + 𝑡𝑨
′
𝑖) ¯B′𝑖 ⊕ {𝑡𝒗

′
𝑖 }, 𝑖 = 1, 2, (23)

where B′
𝑖
,𝑨′

𝑖
, 𝒗′
𝑖
are computed by substituting

¯𝑨 = (𝑰 +𝑇𝑨𝑖), 𝒗 =

𝑇𝒗𝑖 into Equation (7) respectively for 𝑖 = 1, 2. This transformation

allows us to perform the same procedure as described in Sections 4.1

and 4.2 to obtain a new conservative estimate of 𝑡∗ (B′
1
,B′

2
). In every

iteration, a positive 𝑡∗ is obtained and leads us closer to the TOI, until
convergence is achieved when 𝑑 (B′

1
(0),B′

1
(0)) = 0. Convergence

is guaranteed by the continuity and boundedness of the mapping

𝑡∗ = 𝑡∗ (𝑇), for which a detailed proof is provided in the appendix

(Section E).

When solving the conservative version of the CCD problem (Equa-

tion (2)), we advance the current time 𝑇 by a smaller step 𝑡𝛼 := 𝛽𝑡∗

instead of 𝑡∗ and continue the CA iterations until the new distance

𝑑 (B1 (𝑡𝛼)⊖B2 (𝑡𝛼)) becomes smaller than 𝑠 ¯𝑑 . The step size 𝛽 is set to

1−𝑠 for the first iteration and 1− 1

𝛼 for later iterations. In the appen-

dix (Section D), we prove that when 𝑑 (B1 (𝑇 +𝑡𝛼) ⊖B2 (𝑇 +𝑡𝛼)) < 𝑠 ¯𝑑

for the first time, the requirements of the conservative CCD problem

are satisfied, i.e., 𝑠 ¯𝑑 ≤ 𝑑 (B1 (0),B2 (0)) ≤ 𝛼𝑠 ¯𝑑 .

Algorithm 1 summarizes the first CCD algorithm presented in this

paper, referred to as “C
5
D-Linear”, whose variants will be presented

in Section 5.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

C5D: Sequential Continuous Convex Collision Detection Using Cone Casting • 5

Algorithm 1: C5
D-Linear

Procefure Support(B, 𝒗):
Input: B: a closed shape

𝒗: vector

Output: 𝒔: The support vector 𝒔B (𝒗)
. . .

Procefure GJK(B1, B2):
Input: B1, B2: two convex shapes

Output: 𝑑 : the distance 𝑑 (B1 ⊖ B2)
𝒄 : the distance vector 𝒄 (B1 ⊖ B2)

. . .

Procedure C5D-Linear(¯B1, ¯B2, ¯𝑨1, ¯𝑨2, �̄�1, �̄�2,𝑨1,𝑨2, 𝒗1, 𝒗2, 𝑠, 𝛼):
Input: ¯B𝑖 , ¯𝑨𝑖 , �̄�𝑖 ,𝑨𝑖 , 𝒗𝑖 : motion B𝑖 (𝑡) = (¯𝑨𝑖 + 𝑡𝑨𝑖) ¯B𝑖 ⊕ {�̄�𝑖 + 𝑡𝒗𝑖 }

𝑠, 𝛼 : scaling factors required by conservative CCD

Output:𝑇 ∗: The conservative TOI
𝑑, 𝒄 ← GJK

(
B1 (0), B2 (0)

)
¯𝑑 ← 𝑑

𝑇 ← 0

𝛽 ← 1 − 𝑠
while true do

𝒔1 ← Support
(
𝑨1

¯B1 ⊕ {𝒗1}, −𝒄
)

𝒔2 ← Support
(
𝑨2

¯B2 ⊕ {𝒗2}, 𝒄
)

𝑉 ← (𝒔2 − 𝒔1) · 𝒄/𝑑 // Eq. (22)

if 𝑉 ≤ 0 then
return 1.0

else
𝑡∗ ← 𝑑/𝑉
𝑡𝛼 ← 𝛽𝑡∗ // Sec. 4.3

end
𝑑, 𝒄 ← GJK

(
B1 (𝑇 + 𝑡𝛼), B2 (𝑇 + 𝑡𝛼)

)
if 𝑇 > 0 and 𝑑 ≤ 𝑠 ¯𝑑 then

return𝑇
end
𝑇 ← 𝑇 + 𝑡𝛼
if 𝑇 ≥ 1.0 then

return 1.0

end
𝛽 ← 1 − 1

𝛼

end

5 APPROXIMATED RELATIVE MOTION
In Section 4, we discussed the CCD between two moving shapes,

where we made two independent relaxations in Equation (11). The

number of relaxations can be reduced to one when only one shape

moves while the other is static, which leads to a tighter estimate

𝑡∗ and faster convergence. When handling two moving shapes, it

is natural to consider the motion of B2 relative to B1, i.e., B2[1] =
B

2[1] (𝑡), as observed from the frame attached to B1. Unfortunately,

as we will show later, B
2[1] does not undergo a constant affine mo-

tion. However, this issue can be addressed through approximation.

Section 5.1 presents a constant affine approximation of this rel-

ative motion so that the techniques discussed in Section 4 can be

applied. Furthermore, Section 5.2 shows another merit of this ap-

proximation that allows point-wise computation for a tighter bound

on 𝑡∗.

5.1 C5D-Quad
Let Frame 0 denote the world frame, the observation frame used in

Section 4. Let Frame 1 and 2 denote the frames attached to B1,B2,

respectively. At time 𝑡 = 0, the three frames coincide, and thus

¯B𝑖 [0] = ¯B𝑖 [1] = ¯B𝑖 [2] , all of which are denoted by
¯B𝑖 for simplicity.

Over time 𝑡 , Frames 1 and 2 undergo constant affinemotion observed

from Frame 0:

𝑻𝑖 [0] (𝑡) =
(
𝑰 + 𝑡𝑨𝑖 [0] 𝑡𝒗𝑖 [0]

0⊤ 1

)
, 𝑖 = 1, 2. (24)

Note that each shape stays static when observed from its own

frame, i.e., B𝑖 [𝑖] (𝑡) ≡ B𝑖 [𝑖] (0) = ¯B𝑖 , and we have B𝑖 [0] (𝑡) =

𝑻𝑖 [0] (𝑡)B𝑖 [𝑖] (𝑡) = 𝑻𝑖 [0] (𝑡) ¯B𝑖 as in Equation (8). The “relative” trans-

formation from Frame 1 to Frame 2 is:

𝑻
2[1] (𝑡) = 𝑻

0[1] (𝑡)𝑻2[0] (𝑡) = 𝑻−1

1[0] (𝑡)𝑻2[0] (𝑡) (25)

=

(
(𝑰 + 𝑡𝑨

1[0])−1 (𝑰 + 𝑡𝑨
2[0]) 𝑡 (𝑰 + 𝑡𝑨

1[0])−1𝒗
12[0]

0⊤ 1

)
, (26)

where 𝒗
12[0] = 𝒗

2[0] − 𝒗
1[0] . Note that 𝑻

2[1] (𝑡) is not linear in
𝑡 and thus B

2[1] does not undergo a constant affine motion. We

approximate it with its first-order Taylor expansion:

ˆ𝑻
2[1] (𝑡) =

(
𝑰 + 𝑡𝑨

12[0] 𝑡𝒗
12[0]

0⊤ 1

)
, (27)

where 𝑨
12[0] = 𝑨

2[0] − 𝑨
1[0] . The error of this approximation

is analyzed by Claim 1, whose proof is provided in the appendix

(Section B).

Claim 1. ∀𝐾 > 1,∀0 ≤ 𝑡 ≤ (1 − 1/𝐾)/∥𝑨
1[0] ∥,∀𝒃 ∈ R3,(𝑻

2[1] (𝑡) − ˆ𝑻
2[1] (𝑡)

)
𝒃
 ≤ 𝑡2𝐾 (𝛼 ∥𝒃 ∥ + 𝛽), (28)

where 𝛼 = ∥𝑨
1[0] ∥

(
∥𝑨

1[0] ∥ + ∥𝑨2[0] ∥
)
, 𝛽 = ∥𝑨

1[0] ∥∥𝒗12[0] ∥, all
vector norms are 𝑙2 norms, and all matrix norms are 𝑙2 spectral norms.

Let 𝐾 > 1 be a user-specified hyper-parameter, e.g., 𝐾 = 1.1. By

Claim 1, at time 𝑡 (0 ≤ 𝑡 ≤ (1 − 1/𝐾)/∥𝑨
1[0] ∥), ∀¯𝒃2 ∈ ¯B2,

𝒃2 (𝑡) = 𝑻
2[1] (𝑡) ¯𝒃2 ∈

{
ˆ𝑻
2[1] (𝑡) ¯𝒃2

}
⊕ 𝑡2S

(
𝐾 (𝛼 ∥ ¯𝒃2∥ + 𝛽)

)
, (29)

where S(𝑟) = {𝒙 | ∥𝒙 ∥ ≤ 𝑟 } is the sphere of radius 𝑟 centered at 0.
Therefore, let 𝑅2 = 𝐾 (𝛼 max ¯𝒃2∈ ¯B2

∥ ¯𝒃2∥ + 𝛽), and we have

B
2[1] (𝑡) = 𝑻

2[1] (𝑡) ¯B2 ⊆ ˆ𝑻
2[1] (𝑡) ¯B2 ⊕ 𝑡2S(𝑅2) (30)

⊆ ¯B2 ⊕ 𝑡𝑨12
¯B2 ⊕ 𝑡{𝒗12} ⊕ 𝑡2S(𝑅2), (31)

where the “[0]”’s are omitted. Unlike in Equation (11), here no

relaxation is needed for body 1 since B
1[1] (𝑡) ≡ ¯B1. Together,

¯B1 ⊖ B2[1] (𝑡) ⊆ ¯B1 ⊖ ¯B2 ⊖ 𝑡
(
𝑨12

¯B2 ⊕ {𝒗12}
)
⊖ 𝑡2S(𝑅2) . (32)

Similar to Equation (21),

𝑑 (¯B1 ⊖ B2[1] (𝑡)) ≥ 𝑑 (¯B1 ⊖ ¯B2) − 𝑡𝑉 − 𝑡2𝑅2, (33)

where �̂�∗ = 𝒄 (¯B1 ⊖ ¯B2)/𝑑 (¯B1 ⊖ ¯B2), 𝑉 = (𝒔𝑨12
¯B2

(�̂�∗) − 𝒗12) · �̂�∗.
When 𝑅2 > 0, a conservative estimate 𝑡∗ can be obtained by solving

the quadratic equation in t: 𝑑 (¯B1 ⊖ ¯B2) − 𝑡𝑉 − 𝑡2𝑅2 = 0, which has

exactly one positive root 𝑡∗ since −𝑅2 < 0 and 𝑑 (¯B1 ⊖ ¯B2) > 0;

when 𝑅2 = 0, the problem reduces to what has been discussed in

Section 4.2. Note that 𝑡∗ should be clamped into 𝑡∗ < (1−1/𝐾)/∥𝑨1∥
as required by Claim 1. After obtaining 𝑡∗, the CCD problem can be

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 • Yuan, X. et al

advanced as discussed in Section 4.3 before carrying out the next

CA iteration.

Fig. 3. A challenging
case that simplifies
when observed from
Frame 2.

It is worth noting that, alternative to

approximating 𝑻
2[1] , we can also choose

Frame 2 as the reference frame and ap-

proximate 𝑻
1[2] to compute 𝑡∗ (B

1[2] , ¯B2)
as the conservative estimate. In one iter-

ation, different choices of the reference

frame can result in different estimations

of 𝑡∗. Figure 3 illustrates an example where

the ground truth 𝑡∗ = +∞. When observed

from Frame 0 or 2, B
1[2] = B1[0] is mov-

ing, resulting in a positive 𝑉 and a small

𝑡∗. In contrast, when observed from Frame

1, B
2[1] remains static, leading to a dras-

tically larger 𝑡∗. Due to the difficulty in

determining the better reference frame in

general, our method alternates between the two reference frames

every iteration to leverage both. This summarizes the “C
5
D-Quad”

algorithm, with its pseudocode provided in Algorithm 2. This vari-

ant differs from Algorithm 1 mainly in its calculation of the time

update 𝑡∗.

5.2 C5D-Quad-Pw
In this section, we consider specifically the case where B1 and B2

are convex polytopes: B𝑖 = H(V𝑖), whereV𝑖 ∈ R3
is a finite set of

vertices whose convex hull is denoted byH(V𝑖) = {
∑
𝑗 𝑎 𝑗𝒗 𝑗 | 𝑎 𝑗 ∈

R, 𝒗 𝑗 ∈ V𝑖 }, 𝑖 = 1, 2. LetV𝑖 (𝑡) = 𝑻𝑖 ¯V𝑖 .
Recall that for any unit vector �̂�,

𝑑 (B1,B2) ≥ min

𝒃1∈B1

min

𝒃2∈B2

(𝒃1 − 𝒃2) · �̂� (34)

= min

𝒃1∈B1

𝒃1 · �̂� − max

𝒃2∈B2

𝒃2 · �̂� = min

𝒃1∈V1

𝒃1 · �̂� − max

𝒃2∈V2

𝒃2 · �̂�, (35)

which holds as equity when �̂� = 𝒄 (B1 ⊖ B2)/𝑑 (B1 ⊖ B2). Consider
B

1[1] (𝑡) ≡ ¯B1 and B
2[1] (𝑡). Let 𝑃�̂� = min𝒃1∈ ¯V1

𝒃1 · �̂�. Then,

𝑑
(

¯B1,B2[1] (𝑡)
)
≥ 0⇐ ∀¯𝒃 ∈ ¯V2, 𝑃�̂� − 𝑻2[1] (𝑡) ¯𝒃 · �̂� ≥ 0 (36)

⇐ ∀¯𝒃 ∈ ¯V2, 𝑃�̂� − ˆ𝑻
2[1] (𝑡) ¯𝒃 · �̂� − 𝑡2𝐾 (𝛼 ∥ ¯𝒃 ∥ + 𝛽) ≥ 0, (37)

where
ˆ𝑻
2[1] (𝑡) ¯𝒃 = ¯𝒃 + 𝑡 (𝑨

12[0] ¯𝒃 + 𝒗12[0]). For every ¯𝒃 ∈ ¯V2, A

point-wise TOI 𝑡∗
¯𝒃
can be solved from the quadratic inequality in

Equation (37), and we can take 𝑡∗ = min ¯𝒃 𝑡
∗
¯𝒃
for a conservative

estimate of the global TOI 𝑡∗
(

¯B1,B2[1]
)
. We refer to this method

as the “C
5
D-Quad-Pw” algorithm, with its pseudocode provided in

Algorithm 3.

6 EVALUATION
This section evaluates our methods from two perspectives. First,

we assess their performance on a synthetic dataset consisting of

random pairs of convex polytopes undergoing constant affine mo-

tions, allowing for a general comparison with the baseline. Next, we

integrate our CCD methods into the ABD framework to evaluate

their practical performance. All experiments are conducted on an

Intel Core i9-13900KS processor, with the implementation written

Algorithm 2: C5
D-Quad

Procedure C5D-Quad(¯B1, ¯B2, ¯𝑨1, ¯𝑨2, �̄�1, �̄�2,𝑨1,𝑨2, 𝒗1, 𝒗2, 𝑠, 𝛼, 𝐾):
Input: ¯B𝑖 , ¯𝑨𝑖 , �̄�𝑖 ,𝑨𝑖 , 𝒗𝑖 : motion B𝑖 (𝑡) = (𝑰 + 𝑡𝑨𝑖) ¯B𝑖 ⊕ {𝑡𝒗𝑖 }

𝑠, 𝛼 : scaling factors required by conservative CCD

𝐾 : the hyperparameter (Section 5.1)

Output:𝑇 ∗: The conservative TOI
𝑎,𝑏 ← 1, 2

𝑑, 𝒄 ← GJK
(
B𝑎 (0), B𝑏 (0)

)
¯𝑑 ← 𝑑

𝑇 ← 0

𝛽 ← 1 − 𝑠
while true do

/* Rewrite the motion starting from 𝑇 using Eq. (7) */

𝑨′𝑎, 𝑨
′
𝑏
← 𝑨𝑎 (¯𝑨𝑎 +𝑇𝑨𝑎)−1

, 𝑨𝑏 (¯𝑨𝑏 +𝑇𝑨𝑏)−1

𝒗′𝑎, 𝒗
′
𝑏
← 𝒗𝑎 − 𝑨′𝑎 (�̄�𝑎 +𝑇𝒗𝑎), 𝒗𝑏 − 𝑨′

𝑏
(�̄�𝑏 +𝑇𝒗𝑏)

𝒔𝑎𝑏 ← Support
(
(𝑨′

𝑏
− 𝑨′𝑎)B𝑏 (𝑇) ⊕ {𝒗′𝑏 − 𝒗′𝑎 }, 𝒄

)
𝑉 ← 𝒔𝑎𝑏 · 𝒄/𝑑
𝑟𝑏 ← max𝒃∈B𝑏 (𝑇) ∥𝒃 ∥
𝑅𝑏 ← 𝐾 ∥𝑨′𝑎 ∥

((
∥𝑨′𝑎 ∥ + ∥𝑨′𝑏 ∥

)
𝑟𝑏 + ∥𝒗′𝑏 − 𝒗′𝑎 ∥)

)
Δ← 𝑉 2 + 4𝑑𝑅𝑏 // Solve Eq. (33)

𝑡∗ ← min

(
(𝑉 +

√
Δ)/(2𝑅𝑏), (1 − 1/𝐾) ∥𝑨′𝑎 ∥

)
𝑡𝛼 ← 𝛽𝑡∗

Swap(𝑎,𝑏)
𝑑, 𝒄 ← GJK

(
B𝑎 (𝑇 + 𝑡𝛼), B𝑏 (𝑇 + 𝑡𝛼)

)
if 𝑇 > 0 and 𝑑 ≤ 𝑠 ¯𝑑 then

return𝑇
end
𝑇 ← 𝑇 + 𝑡𝛼
if 𝑇 ≥ 1.0 then

return 1.0

end
𝛽 ← 1 − 1

𝛼

end

in C++ and compiled using GCC with the -O2 optimization flag

enabled.

𝑁raw = 10

𝑁raw = 256

Fig. 4. Synthetic data: Example data points from the synthetic dataset (see
Section 6.1). The wireframes represent the initial shapes, while the solid,
semi-transparent objects indicate the transformed shapes at the ground-
truth TOI.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

C5D: Sequential Continuous Convex Collision Detection Using Cone Casting • 7

Algorithm 3: C5
D-Quad-Pw

Procedure
C5D-Quad-Pw(¯V1, ¯V2, ¯𝑨1, ¯𝑨2, �̄�1, �̄�2,𝑨1,𝑨2, 𝒗1, 𝒗2, 𝑠, 𝛼, 𝐾):

Input: ¯V𝑖 : vertices of
¯B𝑖 = H(¯V𝑖)

¯𝑨𝑖 , �̄�𝑖 ,𝑨𝑖 , 𝒗𝑖 : motion B𝑖 (𝑡) = (𝑰 + 𝑡𝑨𝑖) ¯B𝑖 ⊕ {𝑡𝒗𝑖 }
𝑠, 𝛼 : scaling factors required by conservative CCD

𝐾 : the hyperparameter (Section 5.1)

Output:𝑇 ∗: The conservative TOI
𝑎,𝑏 ← 1, 2

𝑑, 𝒄 ← GJK
(
B𝑎 (0), B𝑏 (0)

)
¯𝑑 ← 𝑑

𝑇 ← 0

𝛽 ← 1 − 𝑠
while true do

𝑨′𝑎, 𝑨
′
𝑏
← 𝑨𝑎 (¯𝑨𝑎 +𝑇𝑨𝑎)−1

, 𝑨𝑏 (¯𝑨𝑏 +𝑇𝑨𝑏)−1

𝒗′𝑎, 𝒗
′
𝑏
← 𝒗𝑎 − 𝑨′𝑎 (�̄�𝑎 +𝑇𝒗𝑎), 𝒗𝑏 − 𝑨′

𝑏
(�̄�𝑏 +𝑇𝒗𝑏)

�̂�← 𝑐/𝑑
𝑃 ← �̂�· Support (B𝑎 (𝑇), −�̂�)
𝑡∗ ← (1 − 1/𝐾) ∥𝑨′𝑎 ∥
for ¯𝒃 ∈ ¯V𝑏 do

𝒃𝑇 ← (¯𝑨𝑏 + 𝑡𝑨𝑏) ¯𝒃 + �̄�𝑏 + 𝑡𝒗𝑏
𝐴← −𝐾 ∥𝑨′𝑎 ∥

((
∥𝑨′𝑎 ∥ + ∥𝑨′𝑏 ∥

)
∥𝒃𝑇 ∥ + ∥𝒗′𝑏 − 𝒗′𝑎 ∥)

)
𝐵 ← −�̂� ·

(
(𝑨′

𝑏
− 𝑨′𝑎)𝒃𝑇 + 𝒗′𝑏 − 𝒗′𝑎

)
𝐶 ← 𝑃 − 𝒃𝑇 · �̂�
Δ← 𝐵2 − 4𝐴𝐶 // Solve Eq. (37)

𝑡∗ ← min

(
(−𝐵 +

√
Δ)/(2𝐴), 𝑡∗

)
end
𝑡𝛼 ← 𝛽𝑡∗

Swap(𝑎,𝑏)
𝑑, 𝒄 ← GJK

(
B𝑎 (𝑇 + 𝑡𝛼), B𝑏 (𝑇 + 𝑡𝛼)

)
if 𝑇 > 0 and 𝑑 ≤ 𝑠 ¯𝑑 then

return𝑇
end
𝑇 ← 𝑇 + 𝑡𝛼
if 𝑇 ≥ 1.0 then

return 1.0

end
𝛽 ← 1 − 1

𝛼

end

6.1 Synthetic Data
The synthetic dataset contains randomly sampled pairs of convex

shapes and their constant affine motion. The convex shapes
¯B1, ¯B2

are generated by taking the convex hulls of 𝑁raw points sampled

from the standard normal distribution. We generate two subsets

of data with 𝑁raw = 10 and 𝑁raw = 256 respectively to evaluate

the CCD methods on both low- and high-resolution meshes. The

initial transformation matrices
¯𝑨0, ¯𝑨1 are generated by adding a

small Gaussian noise to randomly sampled rotation matrices, mim-

icking the common case in ABD simulation in practice, where the

stiff objects simulated always have near-rigid affine transforma-

tions. Other information about the constant affine motion, including

𝒗0, 𝒗1,𝑨0,𝑨1, 𝒗0, 𝒗1, are also randomly sampled. More details about

the sampling process and the random distributions can be found in

the appendix (Section F).

Table 1. The evaluation results on synthetic data. Numbers with standard
deviation (std) are formatted as “mean ± std”.𝑁cvx: mean number of vertices
on the convex collision shapes, i.e. the convex hulls of the 𝑁raw random
points. (*): The largest number of iterations among all primitive pairs of
each data sample.

𝑁raw

(𝑁cvx)

Method Iter

Key Iter (𝑃𝑘 =

0.9, 0.95, 0.99)

Time (𝜇𝑠)

10

(8.2)

ACCD 76.4 ± 93.8* – 60 ± 16

C
5
D-Linear 32.9 ± 40.9 6.2, 7.7, 11.3 20 ± 26

C
5
D-Quad 27.5 ± 29.3 6.5, 7.9, 10.8 42 ± 45

C
5
D-Quad-Pw 16.3 ± 10.6 4.6, 5.4, 6.9 25 ± 16

256

(28.2)

ACCD 103.9 ± 119.5* – 719 ± 141

C
5
D-Linear 40.9 ± 55.3 7.9, 9.8, 14.2 48 ± 60

C
5
D-Quad 34.2 ± 37.0 7.7, 9.3, 12.9 73 ± 75

C
5
D-Quad-Pw 14.3 ± 7.9 3.9, 4.6, 5.9 32 ± 16

The “ground-truth” ToI in our synthetic dataset is obtained by

running ACCD [Li et al. 2021] until convergence as defined in Equa-

tion 2 with 𝑠 = 10
−6
. We reject data points whose shapes initially

collide (
ˆ𝑑 = 0) or whose ToI is smaller than 0.01 or larger than 1.0.

Figure 4 presents several examples from the synthetic dataset.

0 50 100 150 200

100

101

102

103

104

R
em

ai
n

in
g

P
k
=

0.
9

Nraw=10

0 100 200

100

101

102

103

104

R
em

ai
n

in
g

P
k
=

0.
95

0 200 400

Iterations

100

101

102

103

104

R
em

a
in

in
g

P
k
=

0.
99

0 200 400 600 800

100

101

102

103

104

Nraw=256

C5D-Linear

C5D-Quad

C5D-Quad-Pw

0 200 400 600 800

100

101

102

103

104

0 200 400 600 800

Iterations

100

101

102

103

104

Fig. 5. Convergence curve: Log-scale convergence curves on synthetic
data. X-axis: number of CA iterations. Y-axis: number of remaining data
samples with 𝑡∗ < 𝑃𝑘𝑡∗. C5D-Quad-Pw demonstrates efficient and stable
convergence, even on data samples that pose challenges for C5D-Linear and
C5D-Quad.

Metrics. The evaluation metrics include the runtime and the num-

ber of CA iterations taken before convergence. For ACCD, every

primitive pair takes a potentially different number of iterations, and

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

8 • Yuan, X. et al

Fig. 6. Pick: A Franka Hand picks up objects and drops them into a box, with the finger trajectories generated using motion planning. Left image: A "batch" of
100 similar scenes with different initializations. When simulated sequentially on a single thread, our C5D-Linear method achieves a 10× speed-up over the
ACCD baseline. Scene-level parallelism on a 24-core CPU further boosts throughput by approximately 14× for both methods.

we present only the worst-case (i.e., largest) number among all prim-

itive pairs. Additionally, to assess the convergence rate of different

variants of C
5
D, we also evaluate the numbers of iterations taken

before the newest lower-bound estimation of ToI, 𝑡∗, reaches certain
“key proportions” 𝑃

k
of the ground truth ToI 𝑡∗. Our experiment

results present the corresponding “key number of iterations” for

𝑃
k
= 0.9, 0.95, and 0.99. The corresponding convergence curves are

visualized in Figure 5.

We evaluate three variants of our method (C
5
D-Linear, C

5
D-

Quad, and C
5
D-Quad-Pw) against the ACCD baseline [Li et al. 2021].

Table 1 presents experimental results on synthetic data, using 10,000

samples for each value of 𝑁raw.

Discussion. On both subsets with low- and high-resolutionmeshes,

C
5
D methods outperform the ACCD baseline in terms of runtime,

benefitting from avoiding traversing the primitive pairs. Moreover,

the mean number of iterations of C
5
D is also notably smaller than

the mean worst-case number of iterations of ACCD. This observa-

tion indicates that, although most primitive pairs are easy, some

primitive pairs are especially challenging for ACCD, bringing down

its overall performance.

Among all the C
5
D variants, C

5
D-Quad-Pw requires the fewest

CA iterations on both subsets. However, for the 𝑁raw = 10 sub-

set, C
5
D-Linear achieves faster runtime despite requiring more

iterations. This is likely due to the simplicity of the iterations in

C
5
D-Linear, which are more easily optimized by the compiler. Nev-

ertheless, Figure 5 shows that on some rare but challenging data

samples, C
5
D-Linear requires significantly more iterations to con-

verge, whereas C
5
D-Quad-Pw maintains a more stable iteration

count, attributed to its robustness as discussed in Section 5.1.

6.2 Application to ABD
To evaluate the performance of our C

5
D methods in practice, we

integrate them into our implementation of ABD and assess the effi-

ciency of different CCD methods in the simulation of a series of test

scenes. We use ACCD [Li et al. 2021] as the baseline and compare it

against our proposed C
5
D-Linear and C

5
D-Quad-Pw methods. The

C
5
D-Quad variant is excluded from this comparison for simplicity,

as it is consistently outperformed by C
5
D-Quad-Pw. The test scenes

and corresponding CCD performances are summarized in Table 2.

The multi-threaded functions are implemented using OpenMP. De-

tailed information regarding the experimental setup and the metrics

is provided in the remainder of this section.

Test scenes. In the test scenes, all collision shapes are represented

by triangular meshes. Some scenes, e.g. “Bunnies” and “Gears”, con-

tain originally non-convex bodies. The collision shapes of those

bodies are represented by unions of multiple convex meshes, either

manually designed or generated using CoACD [Wei et al. 2022].

This collision shape representation is naturally supported by both

ACCD and C
5
D in ABD simulation. For a fair comparison, we use

the same collision shapes for all CCD methods, although ACCD

does not require the convexity of collision shapes.

We test the multi-threaded performance of the CCD methods

on the “Pick” scene (Figure 6). This scene aims to simulate the

application scenario of training a robot arm for a pick-and-place

task. We sample a “batch” of initial configurations with random

object shapes (selected from a set of 10 shapes) and initial positions,

and use the motion planning library MPlib [Guo et al. 2021] to

generate the pick-and-place trajectories for each initialization. The

trajectories of the two fingers (each with one convex collision shape)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

C5D: Sequential Continuous Convex Collision Detection Using Cone Casting • 9

Fig. 7. Dummies: This scene involves 60 dummies falling onto the ground, each composed of 15 convex links connected by ball joints. In this scene, our
C5D-Linear method achieves a 17× speed-up compared to the ACCD baseline.

Table 2. Evaluating the CCD performance during ABD simulation. Bdy: the
number of dynamic affine bodies in the scene, excluding static obstacles.
Vtx: the total number of mesh vertices of all bodies. Cvx: the total number
of convex shapes in the convex decomposition of all bodies.Queries: the
mean number of CCD queries per time step. Iter: the mean total number
of CA iterations taken by all CCD queries before convergence in a time
step. Max Iter: the mean maximum number of CA iterations among all
CCD queries in a time step. Time: the mean CCD runtime per time step in
the ABD simulation. (†): parallelized implementation running on a 24-core
CPU.

Scene (Fig.)

[Bdy, Vtx, Cvx]

Method Queries Iter

Max

Iter

Time

(ms)

Dummies (7)

[900, 45K, 901]

ACCD 2.6 × 10
7

2.6 × 10
7

261.5 9461.2

C
5
D-Linear 9.4 × 10

4 9.5 × 104 28.4 547.9
C
5
D-Quad-Pw 9.4 × 10

4
1.9 × 10

5
38.2 1094.4

Bunnies (8)

[54, 64K, 275]

ACCD 7.0 × 10
6

7.1 × 10
6

81.8 1129.2

C
5
D-Linear 7.3 × 10

2 1.3 × 104 64.2 210.6
C
5
D-Quad-Pw 7.3 × 10

2
1.5 × 10

4 13.4 265.3

Gears (10)

[14, 11K, 396]

ACCD 4.4 × 10
5

4.5 × 10
5

18.5 71.9

C
5
D-Linear 1.0 × 10

3 1.2 × 103 16.8 5.3
C
5
D-Quad-Pw 1.0 × 10

3
2.2 × 10

3 8.7 9.8

Gachapon (1)

[11, 3K, 129]

ACCD 1.3 × 10
6

1.3 × 10
6

15.9 209.6

C
5
D-Linear 4.4 × 10

3 4.4 × 103 8.6 16.8
C
5
D-Quad-Pw 4.4 × 10

3
8.8 × 10

3 2.6 32.4

Wrecking

Ball (9)

[518, 5K, 519]

ACCD 1.8 × 10
6

1.8 × 10
6

15.9 291.5

C
5
D-Linear 2.9 × 10

4 2.9 × 104 3.5 44.3
C
5
D-Quad-Pw 2.9 × 10

4
5.8 × 10

4
4.2 114.9

Pick (6)

[6, 328.0,

12.2]

ACCD 3.5 × 10
4

3.5 × 10
4

1.8 5.81

C
5
D-Linear 2.2 × 10

2 2.2 × 102 1.4 0.57
C
5
D-Quad-Pw 2.2 × 10

2
4.3 × 10

2
2.2 1.23

ACCD-prim
†

3.5 × 10
4

3.5 × 10
4

1.8 2.28

ACCD-scene
†

3.5 × 10
4

3.5 × 10
4

1.8 0.40

C
5
D-Linear

†
2.2 × 10

2 2.2 × 102 1.4 0.043
C
5
D-Quad-Pw

†
2.2 × 10

2
4.3 × 10

2
2.2 0.092

are passed to the ABD simulation as boundary conditions, whereas

the other parts of the robot arm are intentionally designed bymotion

planning to avoid contact with other objects in the scene and are

used solely for rendering purposes.

Metrics. We evaluate the CCD performances by measuring the

total and maximum CA iterations and the total CCD runtime per

time step. For each scene, we select 20 consecutive representative

time steps that involve the highest number of inter-body collisions.

All metrics are averaged over these selected time steps. To compare

efficiency, we report the total number of iterations and total CCD

runtime per time step. Additionally, to illustrate worst-case per-

formance scenarios, we report the maximum number of iterations

taken by CCD queries within each time step, also averaged over all

time steps. For reference, we also provide the total number of CCD

queries per time step, which corresponds to the number of active

convex shape pairs for the C
5
D methods or the number of active

vertex-triangle and edge-edge pairs for ACCD. A collision pair is

considered active if both colliding shapes reside within the i-AABB

[Lan et al. 2022] of the two bodies.

For themulti-threaded experiment on the “Pick” scene, we employ

two different forms of parallelism for ACCD: primitive-level (de-

noted by “ACCD-prim”), aimed at reducing latency, and scene-level

(denoted by “ACCD-scene”), focusing on increasing throughput. Fol-

lowing prior works [Lan et al. 2022; Li et al. 2021], primitive-level

parallelism assigns one thread to process each primitive pair in the

scene once every sub-step, while different scene instances are simu-

lated sequentially. In contrast, scene-level parallelism assigns one

thread to simulate each scene instance, involving no inter-thread

communication until the simulation of all scenes is completed. For

C
5
Dmethods, we only apply scene-level parallelism. For scene-level

parallelism, the reported CCD runtime is a “wall time” estimated by

scaling the overall simulation wall time by the proportion of CCD

CPU runtime relative to the overall simulation CPU runtime.

Discussion. Overall, C5
D-Linear demonstrates the best efficiency

among the three compared methods in terms of total runtime, be-

ing approximately 10 times faster than ACCD and 2 times faster

than C
5
D-Quad-Pw. A noteworthy observation is that the shape

motions within one substep in actual ABD simulation are often

very simple compared to those in the synthetic data in Section 6.1.

These simple motions often have small affine velocity components,

making them nearly translational or even static. In most test scenes,

each CCD query takes barely more than one CA iteration for ACCD

and C
5
D-Linear. In these cases, C

5
D-Quad-Pw suffers from the

overly conservative bound on the affine velocity component, often

requiring two iterations and resulting in being twice as slow as C
5
D-

Linear. However, in some rare but complex queries, C
5
D-Quad-Pw

can require fewer worst-case iterations, though it still falls behind

in overall runtime.

On the other hand, ACCD is highly efficient in handling each

individual query involving one pair of primitives, even though some

complex queries might require more iterations. However, its overall

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

10 • Yuan, X. et al

Fig. 8. Bunnies: We simulate 54 Stanford Bunnies falling into a glass box. The collision shape of each bunny is decomposed into 5 convex components using
CoACD. Our C5D-Linear method delivers a 5× speed-up over the ACCD baseline in this scene.

Fig. 9. Wrecking ball: A wrecking ball hits 512 cubes. Despite the simplicity of most collision shapes (each cube having only 8 vertices), our C5D-Linear
method achieves a 5× speed-up compared to the ACCD baseline.

performance is significantly constrained by the large number of

queries generated by the numerous primitive pairs.

Primitive-level parallelization helps ACCD mitigate the challenge

of processing numerous primitive pairs, achieving a 2.5-fold runtime

reduction. However, the frequent communication overhead limits

the effectiveness of this improvement, particularly when compared

to scene-level parallelization which achieves a 14.5-fold speed-up.

Scene-level parallelization also provides a comparable level of accel-

eration for the C
5
D methods. As a result, C

5
D-Linear remains the

most efficient method among the multi-threaded implementations.

Fig. 10. Gears: A chain of 14 gears driven by the driver gear on the lower-
left corner. Each tooth of a gear’s collision shape is modeled convex. Our
C5D-Linear method delivers a 14× speed-up over the ACCD baseline in this
scene.

7 LIMITATIONS AND FUTURE WORK
Our C

5
D methods rely on two key assumptions about the collision

shapes: convexity and affine motion. The convexity assumption

restricts the applicability of our approach to highly non-convex

objects, such as tubes and tori, whose convex decomposition may

require an impractically large number of convex components to

achieve a close-to-zero approximation error. On the other hand,

the affine motion assumption limits the method’s applicability to

collision detection between highly deformable objects, such as cloth

and ropes. While C
5
D is able to handle the coupling between affine

bodies and deformable objects by treating each primitive on the

deformable object as a convex component, when both objects are

deformable, it reduces to a primitive-level CCD method similar to

ACCD and loses its efficiency advantages.

Looking ahead, we see several opportunities for further improv-

ing the efficiency of C
5
D. For high-resolution convex meshes, one

promising direction is to accelerate support mapping computations

using spatial data structures [Guibas et al. 2000; Teschner et al. 2003;

Wang et al. 2018]. Another potential enhancement is optimizing the

usage of GJK by incorporating early-stopping criteria and reusing

the simplex across CA iterations, inspired by [van den Bergen and

Gregorius 2010]. These enhancements could make C
5
D even more

efficient, benefiting the realistic simulation of (nearly-)rigid objects

and advancing its applications in graphics and robotics.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

C5D: Sequential Continuous Convex Collision Detection Using Cone Casting • 11

ACKNOWLEDGMENTS
We thank all the reviewers for their helpful comments and sug-

gestions. This work was supported by Hillbot Inc. and NSF grant

2301040.

REFERENCES
Mihai Anitescu and Florian A Potra. 1997. Formulating dynamic multi-rigid-body con-

tact problems with friction as solvable linear complementarity problems. Nonlinear
Dynamics 14 (1997), 231–247.

David Baraff. 1994. Fast contact force computation for nonpenetrating rigid bodies.

In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’94). Association for Computing Machinery, New York, NY,

USA, 23–34. https://doi.org/10.1145/192161.192168

David Baraff. 1995. Interactive Simulation of Solid Rigid Bodies. IEEE Comput. Graph.
Appl. 15, 3 (May 1995), 63–75. https://doi.org/10.1109/38.376615

David Baraff. 1997. An introduction to physically based modeling: rigid body simulation

I—unconstrained rigid body dynamics. SIGGRAPH course notes 82 (1997).
Klaus-Jürgen Bathe. 2006. Finite element procedures. Klaus-Jurgen Bathe.

Jan Bender, Kenny Erleben, and Jeff Trinkle. 2014. Interactive simulation of rigid body

dynamics in computer graphics. In Computer Graphics Forum, Vol. 33. Wiley Online

Library, 246–270.

John Canny. 1986. Collision Detection for Moving Polyhedra. IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-8, 2 (1986), 200–209. https:

//doi.org/10.1109/TPAMI.1986.4767773

Yunuo Chen, Minchen Li, Lei Lan, Hao Su, Yin Yang, and Chenfanfu Jiang. 2022. A

unified newton barrier method for multibody dynamics. ACM Trans. Graph. 41, 4,
Article 66 (July 2022), 14 pages. https://doi.org/10.1145/3528223.3530076

Erwin Coumans and Yunfei Bai. 2016–2021. PyBullet, a Python module for physics

simulation for games, robotics and machine learning. http://pybullet.org.

Evan Drumwright. 2007. A fast and stable penalty method for rigid body simulation.

IEEE transactions on visualization and computer graphics 14, 1 (2007), 231–240.
Kenny Erleben. 2007. Velocity-based shock propagation for multibody dynamics

animation. ACM Transactions on Graphics (TOG) 26, 2 (2007), 12–es.
Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,

Chenfanfu Jiang, Denis Zorin, Danny M Kaufman, and Daniele Panozzo. 2021.

Intersection-free rigid body dynamics. ACM Transactions on Graphics 40, 4 (2021).
Susan Fisher and Ming C Lin. 2001. Fast penetration depth estimation for elastic bodies

using deformed distance fields. In Proceedings 2001 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the
Next Millennium (Cat. No. 01CH37180), Vol. 1. IEEE, 330–336.

E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. 1988. A fast procedure for computing

the distance between complex objects in three-dimensional space. IEEE Journal on
Robotics and Automation 4, 2 (1988), 193–203. https://doi.org/10.1109/56.2083

Leonidas J Guibas, David Hsu, and Li Zhang. 2000. A hierarchical method for real-time

distance computation among moving convex bodies. Computational Geometry 15,

1-3 (2000), 51–68.

Runlin (Kolin) Guo, Xinsong Lin, Minghua Liu, Jiayuan Gu, and Hao Su. 2021. MPlib: a
Lightweight Motion Planning Library. https://github.com/haosulab/MPlib

Shoichi Hasegawa, Nobuaki Fujii, Katsuhito Akahane, Yasuharu Koike, and Makoto

Sato. 2004. Real-time rigid body simulation for haptic interactions based on contact

volume of polygonal objects. Transactions of the Society of Instrument and Control
Engineers 40, 2 (2004), 122–131.

Kemeng Huang, Xinyu Lu, Huancheng Lin, Taku Komura, and Minchen Li. 2024. Ad-

vancing GPU IPC for stiff affine-deformable simulation. arXiv:2411.06224 [cs.GR]

https://arxiv.org/abs/2411.06224

Daniel W. Johnson. 1987. The optimization of robot motion in the presence of obstacles.
Ph. D. Dissertation. USA. AAI8720285.

DannyM Kaufman, Timothy Edmunds, and Dinesh K Pai. 2005. Fast frictional dynamics

for rigid bodies. In ACM SIGGRAPH 2005 Papers. 946–956.
Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022. Affine

body dynamics: fast, stable and intersection-free simulation of stiff materials. ACM
Trans. Graph. 41, 4, Article 67 (jul 2022), 14 pages. https://doi.org/10.1145/3528223.

3530064

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele

Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential

Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM Trans.
Graph. (SIGGRAPH) 39, 4, Article 49 (2020).

Minchen Li, DannyM. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental

Potential Contact. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 170 (2021).
Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based

simulation of compliant constrained dynamics. In Proceedings of the 9th International
Conference on Motion in Games. 49–54.

Brian Mirtich and John Canny. 1995. Impulse-based simulation of rigid bodies. In

Proceedings of the 1995 symposium on Interactive 3D graphics. 181–ff.

Brian Vincent Mirtich. 1996. Impulse-based Dynamic Simulation of Rigid Body Systems.
Ph. D. Dissertation. University of California Berkeley. https://people.eecs.berkeley.

edu/~jfc/mirtich/thesis/mirtichThesis.pdf

Mattia Montanari, Nik Petrinic, and Ettore Barbieri. 2017. Improving the GJK Algorithm

for Faster and More Reliable Distance Queries Between Convex Objects. ACM Trans.
Graph. 36, 3, Article 30 (June 2017), 17 pages. https://doi.org/10.1145/3083724

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position

based dynamics. Journal of Visual Communication and Image Representation 18, 2

(2007), 109–118.

Xavier Provot. 1997. Collision and self-collision handling in cloth model dedicated

to design garments. In Computer Animation and Simulation’97: Proceedings of the
Eurographics Workshop in Budapest, Hungary, September 2–3, 1997. Springer, 177–
189.

S. Redon, A. Kheddar, and S. Coquillart. 2000. An algebraic solution to the problem of

collision detection for rigid polyhedral objects. In Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No.00CH37065), Vol. 4. 3733–3738 vol.4. https://doi.org/10.1109/

ROBOT.2000.845313

David E Stewart. 2000. Rigid-body dynamics with friction and impact. SIAM review 42,

1 (2000), 3–39.

Min Tang, Young J Kim, and Dinesh Manocha. 2009. C2A: Controlled conservative

advancement for continuous collision detection of polygonal models. In 2009 IEEE
International Conference on Robotics and Automation. IEEE, 849–854.

Min Tang, Ruofeng Tong, Zhendong Wang, and Dinesh Manocha. 2014. Fast and exact

continuous collision detection with bernstein sign classification. ACM Transactions
on Graphics (TOG) 33, 6 (2014), 1–8.

Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat Pomerantes, and

Markus H Gross. 2003. Optimized spatial hashing for collision detection of de-

formable objects.. In Vmv, Vol. 3. 47–54.
Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine for

model-based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 5026–5033. https://doi.org/10.1109/IROS.2012.6386109

Jeffrey C Trinkle, JA Tzitzouris, and Jong-Shi Pang. 2001. Dynamic multi-rigid-body

systems with concurrent distributed contacts. Philosophical Transactions of the Royal
Society of London. Series A: Mathematical, Physical and Engineering Sciences 359,
1789 (2001), 2575–2593.

Gino van den Bergen. 2004. Collison detection in interactive 3D environments. Else-
vier/Morgan Kaufman, Amsterdam ; Boston.

Gino van den Bergen and Dirk Gregorius. 2010. Game physics pearls. A.K. Peters,

Natick, Mass. 99–123 pages.

Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele

Panozzo. 2021. A Large-scale Benchmark and an Inclusion-based Algorithm for

Continuous Collision Detection. ACM Trans. Graph. 40, 5, Article 188 (Sept. 2021),
16 pages. https://doi.org/10.1145/3460775

Xinlei Wang, Min Tang, Dinesh Manocha, and Ruofeng Tong. 2018. Efficient BVH-based

collision detection scheme with ordering and restructuring. In Computer graphics
forum, Vol. 37. Wiley Online Library, 227–237.

Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su. 2022. Approximate convex de-

composition for 3d meshes with collision-aware concavity and tree search. ACM
Transactions on Graphics (TOG) 41, 4 (2022), 1–18.

Hongyi Xu, Yili Zhao, and Jernej Barbič. 2014. Implicit multibody penalty-

baseddistributed contact. IEEE transactions on visualization and computer graphics
20, 9 (2014), 1266–1279.

A THEOREM NEEDED BY EQUATION (20)
Theorem 1. Let B ⊂ R3 be convex, 𝒂 ∈ B s.t. ∀𝒃 ∈ B, ∥𝒃 ∥ ≥ ∥𝒂∥.

Then ∀𝒃 ∈ B, 𝒂 · (𝒃 − 𝒂) ≥ 0.

Proof. Suppose for contradiction that ∃𝒄 ∈ B s.t. 𝒂 · (𝒄 − 𝒂) < 0.

If 𝒄 · (𝒄 − 𝒂) ≤ 0, then 𝒄 · 𝒄 ≤ 𝒄 · 𝒂 < 𝒂 · 𝒂, contradicting that

∥𝒄 · 𝒄 ∥ ≥ ∥𝒂 · 𝒂∥; if 𝒄 · (𝒄 − 𝒂) > 0, let 𝑘 = −𝒂 · (𝒄 − 𝒂)/∥𝒄 − 𝒂∥2,
then 0 < 𝑘 < 1, hence 𝒂 + 𝑘 (𝒄 − 𝒂) ∈ B. But ∥𝒂 + 𝑘 (𝒄 − 𝒂)∥2 =

∥𝒂∥2 − (𝒂 · (𝒄 − 𝒂))2/∥𝒄 − 𝒂∥2 < ∥𝒂∥2, which is contradictory. □

Intuitively, Theorem 1 states that: if 𝒂 is the closest point to the

origin on a convex shape, −𝒂 serves as a normal vector. Specifically,
the entire convex shape lies on one side of the plane that is perpen-

dicular to 𝒂 and passes through 𝒂, while the origin lies on the other

side.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/192161.192168
https://doi.org/10.1109/38.376615
https://doi.org/10.1109/TPAMI.1986.4767773
https://doi.org/10.1109/TPAMI.1986.4767773
https://doi.org/10.1145/3528223.3530076
http://pybullet.org
https://doi.org/10.1109/56.2083
https://github.com/haosulab/MPlib
https://arxiv.org/abs/2411.06224
https://arxiv.org/abs/2411.06224
https://doi.org/10.1145/3528223.3530064
https://doi.org/10.1145/3528223.3530064
https://people.eecs.berkeley.edu/~jfc/mirtich/thesis/mirtichThesis.pdf
https://people.eecs.berkeley.edu/~jfc/mirtich/thesis/mirtichThesis.pdf
https://doi.org/10.1145/3083724
https://doi.org/10.1109/ROBOT.2000.845313
https://doi.org/10.1109/ROBOT.2000.845313
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1145/3460775

12 • Yuan, X. et al

B PROOF FOR CLAIM 1
We analyze the error in the linear transformation block 𝑬𝑨 and the

translation block 𝒆𝒗 separately, as in

𝑻
2[1] (𝑡) − ˆ𝑻

2[1] (𝑡) =
(
𝑬𝑨(𝑡) 𝒆𝒗 (𝑡)
0⊤ 1

)
, (38)

Omitting the “[0]”’s for simplicity, the linear transformation error

is

𝑬𝑨(𝑡) = (𝑰 + 𝑡𝑨1)−1 (𝑰 + 𝑡𝑨2) − (𝑰 + 𝑡𝑨2 − 𝑡𝑨1) (39)

= (𝑰 + 𝑡𝑨1)−1 − 𝑰 + 𝑡
(
(𝑰 + 𝑡𝑨1)−1𝑨2 −𝑨2 +𝑨1

)
(40)

=
(
𝑰 − 𝑡𝑨1 + 𝑡2𝑨2

1
(𝑰 + 𝑡𝑨1)−1

)
− 𝑰 (41)

+ 𝑡
(
(𝑰 − 𝑡𝑨1 (𝑰 + 𝑡𝑨1)−1)𝑨2 −𝑨2 +𝑨1

)
(42)

= 𝑡2𝑨1

(
𝑨1 (𝑰 + 𝑡𝑨1)−1 − (𝑰 + 𝑡𝑨1)−1𝑨2

)
. (43)

Since 𝑡 ∥𝑨1∥ ≤ 1 − 1/𝐾 < 1 by the assumption of the claim, we can

use the Neumann series to bound

∥(𝑰 + 𝑡𝑨1)−1∥ =
 ∞∑︁
𝑗=0

(−𝑡𝑨1) 𝑗
 ≤ ∞∑︁

𝑗=0

(𝑡 ∥𝑨1∥) 𝑗 =
1

1 − 𝑡 ∥𝑨1∥
≤ 𝐾.

(44)

Therefore,

∥𝑬𝑨(𝑡)∥ ≤ 𝑡2∥𝑨1∥(∥𝑨1∥ + ∥𝑨2∥)(𝑰 + 𝑡𝑨1)−1 = 𝑡2𝐾𝛼. (45)

As for the translation block,

𝒆𝒗 (𝑡) = 𝑡
(
(𝑰 + 𝑡𝑨1)−1 − 𝑰

)
𝒗12 (46)

= −𝑡2𝑨1 (𝑰 + 𝑡𝑨1)−1𝒗12, (47)

and

∥𝒆𝒗 (𝑡)∥ ≤ 𝑡2∥𝑨1∥∥(𝑰 + 𝑡𝑨1)−1∥∥𝒗12∥ ≤ 𝑡2𝐾𝛽. (48)

Finally, combining the norm bounds on 𝑬𝑨 and 𝒆𝒗 , we have

∥𝑻
2[1] (𝑡) − ˆ𝑻

2[1] (𝑡)𝒃 ∥ = ∥𝑬𝑨𝒃 + 𝒆𝒗 ∥ ≤ ∥𝑬𝑨∥∥𝒃 ∥ + ∥𝒆𝒗 ∥ (49)

≤ 𝑡2𝐾 (𝛼 ∥𝒃 ∥ + 𝛽) . (50)

C IMPLEMENTATION DETAILS
We implemented the “Support” function (see Algorithm 1) as a plain

for loop through all vertices of the convex mesh B, assuming the

number of vertices is always small. For high-resolution meshes,

this process could be accelerated using many possible choices of

spatial data structures, such as BVH [Wang et al. 2018], hash grids

[Teschner et al. 2003], and also data structures that are specially

designed for convex polytopes [Guibas et al. 2000].

We follow Montanari et al. [2017] for the implementation of

the GJK algorithm, which also calls the “Support” function. In the

pseudocode, we directly pass the transformed convex shapes into the

“Support” and “GJK” functions for readability; in our implementation,

we pass the untransformed convex shapes
¯B with the corresponding

transformations instead. In this way, inside the implementation

of the “Support” function, we can transform the query vector 𝒗
efficiently instead of transforming every vertex of

¯B, as mentioned

in Section 4.2.

The numerical stability of our CA-based CCD method is closely

tied to the numerical stability of the GJK algorithm. We follow

the implementation of Montanari et al. [2017]
1
on the choices of

floating-point tolerance parameters in the GJK algorithm. Specif-

ically, we set 𝜀
rel

= 10
4 × 𝜀M and 𝜀

tol
= 10

2 × 𝜀M, where 𝜀M is the

machine epsilon, 𝜀M ≈ 2.22 × 10
−16

for double precision. We refer

the reader to [Montanari et al. 2017] for a detailed discussion on

these choices, as well as the numerical stability of Johnson’s Algo-

rithm [Johnson 1987], which is also important for the robustness of

GJK.

D ADVANCEMENT FOR CONSERVATIVE CCD
In this section, we discuss the details of the advancement scheme

for the conservative CCD problem with proof of correctness.

We first recap the definition of conservative CCD given in Equa-

tion (2). In the conservative CCD problem, instead of finding an exact

TOI 𝑇 ∗ such that 𝑑 (B1 (𝑇 ∗),B2 (𝑇 ∗)) = 0, we seek a conservative

TOI 𝑇 ∗ that maintains a small gap between the shapes:

𝑠 ¯𝑑 ≤ 𝑑
(
B1 (𝑇 ∗)),B2 (𝑇 ∗)

)
< 𝛼𝑠 ¯𝑑, (51)

where
¯𝑑 = 𝑑

(
B1 (0)),B2 (0)

)
. The left inequality enforces that the

gap remains above the minimal separation requirement 𝑠 ¯𝑑 , while

the right inequality ensures the gap does not become too large.

All C
5
D methods share the same CA framework. In the 𝑘-th CA

iteration, we first rewrite each motion B(𝑡) into a motion starting

from the current TOI estimate 𝑇 (𝑘) by Equation (7):

B (𝑘) (𝑡) = B
(
𝑇 (𝑘) + 𝑡

)
= (𝑰 + 𝑡𝑨′)B(𝑇) + 𝑡𝒗′ . (52)

For convenience, define the distance 𝑑 (𝑡) = 𝑑
(
B1 (𝑡),B2 (𝑡)

)
as a

function of 𝑡 , and similarly𝑑 (𝑘) (𝑡) = 𝑑
(
𝑇 (𝑘)+𝑡

)
= 𝑑

(
B (𝑘)

1
(𝑡),B (𝑘)

2
(𝑡)

)
.

In C
5
D-Linear, C

5
D-Quad, and C

5
D-Quad-Pw, the distance function

is approximated with different lower bounds
ˆ𝑑 (𝑘) ≤ 𝑑 (𝑘) respec-

tively:

ˆ𝑑
(𝑘)
L
(𝑡) = 𝑑 (𝑘) (0) − 𝑡𝑉 , Eq. (21) (53)

ˆ𝑑
(𝑘)
Q
(𝑡) = 𝑑 (𝑘) (0) − 𝑡𝑉 − 𝑡2𝑅, Eq. (33) (54)

ˆ𝑑
(𝑘)
QP
(𝑡) = min

¯𝒃∈B (𝑘)
2
(0)

¯𝑑 ¯𝒃 − 𝑡𝑉¯𝒃 − 𝑡
2𝑅 ¯𝒃 . Eq. (37) (55)

The constant coefficients have been simplified in the above equa-

tions; for full details, please refer to the corresponding equations in

themain paper. Notably, in Equation (55), we havemin
¯𝒃∈B (𝑘)

2
(0)

¯𝑑 ¯𝒃 =

𝑑 (𝑘) (0), which implies
ˆ𝑑 (𝑘) (0) = 𝑑 (𝑘) (0) across all lower-bound

definitions. Another key observation is that all three lower bounds

are concave. In specific,
ˆ𝑑
(𝑘)
L
(𝑡) is linear, ˆ𝑑

(𝑘)
Q
(𝑡) is a concave qua-

dratic function (since 𝑅 > 0), and
ˆ𝑑
(𝑘)
QP
(𝑡), as a point-wise minimum

of multiple concave functions, is likewise concave.

As is mentioned in Section 4.3, in the advancement step, the

current time 𝑇 (𝑘) is advanced to 𝑇 (𝑘+1) = 𝑇 (𝑘) + 𝑡𝛼 , where

𝑡𝛼 =
(
1 − 1

𝛼

)
𝑡∗, ˆ𝑑 (𝑘) (𝑡∗) = 0. (56)

1
https://github.com/MattiaMontanari/openGJK

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://github.com/MattiaMontanari/openGJK

C5D: Sequential Continuous Convex Collision Detection Using Cone Casting • 13

At 𝑡𝛼 , by the concavity of
ˆ𝑑 (𝑘) for all variant methods,

ˆ𝑑 (𝑘) (𝑡𝛼) ≥
1

𝛼
ˆ𝑑 (𝑘) (0) +

(
1 − 1

𝛼

)
ˆ𝑑 (𝑘) (𝑡∗) (57)

=
1

𝛼
𝑑 (𝑘) (0) (58)

=
1

𝛼
𝑑 (𝑇) . (59)

Recall that we exit the loop and return 𝑇 ∗ ← 𝑇 when we find

𝑑 (𝑇 + 𝑡𝛼) < 𝑠 ¯𝑑 for the first time. In this case,

1

𝛼
𝑑 (𝑇) ≤ ˆ𝑑 (𝑘) (𝑡𝛼) ≤ 𝑑 (𝑘) (𝑡𝛼) < 𝑠 ¯𝑑, (60)

and hence 𝑑 (𝑇) < 𝛼𝑠 ¯𝑑 . Since we did not exit the loop when we

advanced to 𝑇 , we immediately have 𝑑 (𝑇) ≥ 𝑠 ¯𝑑 . Therefore, both

inequalities are satisfied in Equation (51).

In practice, IPC and ABD simulation often uses large values of

𝑠 , e.g. 𝑠 = 0.1, to keep a safer gap between objects and prevent

numerical issues. For 𝑠 > 1

𝛼 , it is necessary to take a smaller step

𝑡
(0)
𝛼 = (1 − 𝑠)𝑡∗(0) instead of

(
1 − 1

𝛼

)
𝑡∗(0) in the first iteration (i.e.

when 𝑇 = 0). The former step size guarantees that

𝑑 (0) (𝑡𝛼) ≥ 𝑠𝑑 (𝑘) (0) = 𝑠 ¯𝑑 (61)

by Equation (58), and prevents stopping in the first iteration.

E CONVERGENCE OF CONSERVATIVE ADVANCEMENT
In this section, we prove the convergence of our CA methods. In-

spired by [van den Bergen 2004], the proof utilizes the continuity

of the mapping 𝑓 (𝑇 (𝑘)) = 𝑇 (𝑘+1) , where 𝑇 (𝑘) denotes the lower-
bound TOI estimate at the 𝑘-th CA iteration.

Each variant of C
5
D defines a different mapping:

𝑓L (𝑇) = 𝑇 + 𝑑 (𝑇)/𝑉 (𝑇), Eq. (21)

𝑓Q (𝑇) = 𝑇 +
√︁
𝑉 (𝑇)2 + 4𝑑 (𝑇)𝑅2 (𝑇) −𝑉 (𝑇)

2𝑅2 (𝑇)
, Eq. (33)

𝑓Q𝑃 (𝑇) = 𝑇 + min

b∈V2

√︁
𝑉b (𝑇)2 + 4𝑑b (𝑇)𝑅b (𝑇) −𝑉b (𝑇)

2𝑅b (𝑇)
. Eq. (37)

(62)

The definition of the𝑑,𝑉 , 𝑅 functions can be found in the correspond-

ing equations in the paper. To show all 𝑓 functions are continuous,

it suffices to have all 𝑑,𝑉 , 𝑅 functions continuous. While 𝑑 and 𝑅

are continuous by their closed-form definition, the continuity of

𝑉 requires slightly more attention. For example, by Equation (22),

𝑉 seems to contain support mappings 𝒔B (·) which is not contin-

uous. However, 𝑉 only depends on support functions in the form

of 𝒔B (𝒏) · 𝒏 = max𝒃∈B 𝒃 · 𝒏, which is continuous in 𝒏 when B is

bounded and closed, and 𝒏 = 𝒏(𝑇) is continuous in 𝑇 . Therefore,
𝑉 is also continuous in T. Similar results can be obtained for 𝑉𝒃 .

Therefore, all 𝑓 functions are continuous in 𝑇 .

As shown in Section 4, we have{
𝑇 < 𝑓 (𝑇) ≤ 𝑇 ∗ if 0 ≤ 𝑇 ≤ 𝑇 ∗,
𝑓 (𝑇) = 𝑇 ∗ if 𝑇 = 𝑇 ∗,

(63)

where𝑇 ∗ denotes the TOI. Therefore, the sequence {𝑇 (𝑘) } is strictly
increasing and bounded above by𝑇 ∗, which guarantees convergence

to some limit 𝐿 ≤ 𝑇 ∗. Since 𝑓 is also continuous on [0,𝑇 ∗], we have:

𝐿 = lim

𝑘→∞
𝑇 (𝑘+1) = lim

𝑘→∞
𝑓 (𝑇 (𝑘)) = 𝑓

(
lim

𝑘→∞
𝑇 (𝑘)

)
= 𝑓 (𝐿). (64)

Since 𝑓 (𝑇) > 𝑇 for any 𝑇 < 𝑇 ∗, the only solution is 𝐿 = 𝑇 ∗, i.e.,
lim𝑘→∞𝑇

(𝑘) = 𝑇 ∗. This concludes that our CA-based iterative

algorithm converges to the ground-truth TOI.

F GENERATION OF THE SYNTHETIC DATA
In this section, we provide details on the generation of the synthetic

dataset in Section 6.1. The generation process of one data sample

consists of two stages.

Stage 1: 𝑽 , 𝑭 , ¯𝑨, 𝒗. Two point sets 𝑽 raw

1
and 𝑽 raw

2
, each with 𝑁raw

points, are generated from the standard normal distribution:

𝑽 raw ∼ N𝑁raw×3 (0, 1). (65)

We use the Eigen library to compute their convex hulls, meshes

(𝑽1, 𝑭1) and (𝑽2, 𝑭2).
The initial transformation, (¯𝑨, 𝒗), is intentionally designed to be

close to a rigid transformation, as is the case in ABD simulation in

practice. We first sample a random rotation matrix 𝑹 by performing

singular value decomposition 𝑹raw = 𝑼𝚺𝑽⊤ on a random matrix

𝑹raw ∼ N3×3 (0, 1) and taking 𝑹 = 𝑼𝑽⊤. We then add a small

Gaussian noise onto 𝑹 to obtain
¯𝑨 = 𝑹+𝑬 , where 𝑬 ∼ N3×3 (0, 𝜎 ¯𝑨 =

0.1). We sample 𝒗 uniformly inside the ball of radius 𝑟�̄� , centered

at the origin. We choose 𝑟�̄� = 2.0 for 𝑁raw = 10 and 𝑟�̄� = 3.0 for

𝑁raw = 256.

We then compute the distance between the mesh (𝑽1, 𝑭1) trans-
formed by (¯𝑨1, 𝒗1) and mesh (𝑽2, 𝑭2) transformed by (¯𝑨2, 𝒗2). If
their distance is less than 10

−9
, we reject this sample and restart

from the beginning of Stage 1.

Stage 2: 𝑨, 𝒗. We first sample 𝑨raw ∼ N3×3 (0, 1). We noted that

the distribution of spectral norm of𝑨raw
is a bit concentrated around

2.2. To simulate scenarios with more diverse scales of 𝑨, small or

large, we rescaled 𝑨raw
into 𝑨 = 𝑠𝑨𝑨

raw/∥𝑨raw∥, where 𝑠𝑨 ∼
U(0, 𝑟𝑨 = 1.0) (the uniform distribution). Similarly, we sample

𝒗 = 𝑠𝒗𝒗raw/∥𝒗raw∥, where 𝒗raw ∼ N3 (0, 1) and 𝑠𝒗 ∼ U(0, 𝑟𝒗 = 0.5).
We then compute the TOI using the generated shapes andmotions.

If the TOI is not between 0.01 and 1.0, we reject this sample and

restart from the beginning of Stage 1.

G ADDITIONAL EXPERIMENTAL RESULTS
A Trajectory Example. Figure 11 illustrates the evolution of TOI

estimates 𝑇 and distances 𝑑 during iterative CA updates for a repre-

sentative trajectory. This example corresponds to the first synthetic

data point (top-left) shown in Figure 4. Across all three C
5
D vari-

ants, the lower-bound TOI estimates gradually converge toward

the ground-truth TOI, while the distances between the two convex

shapes decrease in a near-logarithmic manner. Among the methods,

C
5
D-Quad-PW exhibits the most efficient convergence in terms of

iteration count for this example, consistent with the trends observed

across the broader dataset summarized in Table 1.

Trade-off between CCD accuracy and ABD Newton iterations. Fig-
ure 12 illustrates how the maximum number of CCD iterations

influences the convergence of the ABD solver. This experiment

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

14 • Yuan, X. et al

Fig. 11. Trajectory Example: Evolution of TOI estimates𝑇 and distances𝑑
during iterative CA updates. Left: Lower-bound TOI estimate progressively
approaches the ground-truth TOI. Right: The distance between the two
convex shapes decreases in a near-logarithmic manner.

Fig. 12. CCD–Newton Trade-Off: Impact of themaximumnumber of CCD
iterations on the convergence of the ABD solver. X-axis: maximum allowed
CCD iterations per convex shape pair, with conservative advancement
running until convergence or this limit. Y-axis: number of Newton iterations
required for the ABD solver to converge.

uses the “Gears” scene (Figure 10) with a separation threshold

𝑠 = 0.25. During each Newton iteration, conservative advancement

is performed on each convex shape pair until either convergence is

reached (𝑑 < 𝑠 ¯𝑑) or the iteration count hits CCD_Max_Iters. Varying
CCD_Max_Iters impacts the number of Newton iterations required

to meet the convergence criterion ∥p∥
inf
≤ 10

−4
, where p is the

Newton update step.

The experiment demonstrates that increasing CCD accuracy re-

duces the number of Newton iterations required for convergence.

WhenCCD is limited in accuracy–for example, with CCD_Max_Iters
set to 1–the resulting step size in each Newton iteration becomes

overly conservative, which in turn slows down the overall conver-

gence of Newton’s method.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Stiff and Rigid Body Simulation
	2.2 Continuous Collision Detection

	3 Problem Formulation
	4 Cone-Casting CCD (C5D-Linear)
	4.1 Cone casting as a conservative estimation
	4.2 Cone casting by conservative advancement
	4.3 Advancement

	5 Approximated Relative Motion
	5.1 C5D-Quad
	5.2 C5D-Quad-Pw

	6 Evaluation
	6.1 Synthetic Data
	6.2 Application to ABD

	7 Limitations and Future Work
	Acknowledgments
	References
	A Theorem Needed by Equation (20)
	B Proof for Claim 1
	C Implementation Details
	D Advancement for Conservative CCD
	E Convergence of Conservative Advancement
	F Generation of the Synthetic Data
	G Additional Experimental Results

